
0---

An Experimen in Table Driven Code Generation

Technical Report

R.S. Fabry
(415) 642-2714

CL

LA- "The views and conclusions contained in this document
are those of the authors and should not be interpreted
as representing the official policies, either expressed
or implied, of the Defense Advanced Research Projects
Agency or the U.S. Government."

4

Contract N00039-82-C-0235
November 15, 1981 September 30,-1983

ARPA Order Number 4031 z*41/ .

_ __ _V

,4q
I DI5T•..U.., E. AIW

'APPWYd fN VEP3 i

Proceedings of the ACM SIGPLAN '82 Symposium on Compiler ComstUnctou.

An Experiment In Table. Driven Code Generation'

by

Rbost ft. Hearg
Robeft A Schobn

Computer Science Division
Department of Zlectricel Ingineerlng and Computer Sciences

University of Cal~ornia. Berkeley
Berkeley. CA 94720

WWhaeconstructed a local code generator for the The UNIX portable "C' compiler (abbreviated a
VAX-l1t using a parser-like instruction pattern matcher. PMC) (JobasonT91 is a reargetable compiler for the Vse-
The aed generator replaces the second pass of the tome programming language "C'. It in written In "'C'
UNDV Portable ?'Cf compiler. This paper describes the and run under the UNIX eperating system PCC has
design of the code generator and the special considers- been suocesafuly retargeted to ever two dozen

* liens imposed by the pattern matching process. Ws machines (Johnsonl]. The compiler has two logical
summarize the structure of the macbins description phase@. The &art phase Is mostly specific to "C". and
grammar and Its associated semantic accion, as well as produces an intermediate representation of the pro-
the tools we developed to manipulate the large VAX gram consisting of a forest of expression trees Inter-

*description. In our experience. this approach makes the spersed with target machine specific Instructions to
instruction selection phase of the compiler easier and Implement unconditional control glow. The second
faster to implement. and prelikely to be correct, than phase generates assembly code and is mostly target

*traditional techniques. machine dependent. driven by a somewhat ad hoc pat-
torn matcher using patterns taken from a band Can-

1. hrodutlenorated, table. PCC doss no global optimization or recog-
In the last few years. we have been studying an nition, of common subexpressions. A Fortran 77 coin-

approach to code generation in which instructions are piler (Feldmn79 and the Berkeley Pascal compiler
selected by a pattern-meahig pioces that chooses [Joy7BJ share the same intermediate representation
instructions from a table generated automatically Lom and second pass of the portable C" compiler.
a machine description. The Initial version of the tech- Our experiment wp-. to replace the second pass of
nique Is described in [GlanvIUe7] and (GlanvI11978]. the portable "C" compiler with a code generator that
(GrahemlO] gives an overview of this and related tech- uses the Graham-Olanvile methods. We chose to pro-

*nique. (Henryfl] gives a detailed description of an duo code for the machine we had available, a VAX-I1.
implementation, together with smew Improvements to and to devote only a limited amount of time to the pro-
the method. Related work appears In (GanapetlDOJ jeot. Our initial goal was not to develop a truly retarget-
[JaneohnSO], (Guirsl . and (Crawlo rdSIJ. able compiler, but to gain experience with Graham-

Recently, we conducted a limited experiment to Glanville techniques, generating good local code for a
gain mome experience with this technque (Sohul. real machine. for production progroaming languages.
manflS]. Our goal was to attempt to use this method In to forc u s to solvs real problems. By comparing our
a controlled setting in which comparisons would be poa- generated code with that Produced by PCC. we could
Bible. Our experience has been favorable and is analyze the eleoctiveness of our Implementation doci-
described in this paper. adonse.s goal has been achieved, and with this experi-

enwe we are new trying to make the code generator
19PP r %bes war Ws P @Wiel by O ted 1damlt ftso retargetable and to Improve Uts perflormance.
uru daWat MaIMI"-

IVAX is & tandawak of Dliatal kqWpmm CwpwasL@. Te had available a previous Implementation of a
RMl is a Usaaw si in Laboratutse Grabom4XGanviIle ao generator generator, the Code

Generator Generators Work Station (CGOWS) (HenryS ii.
However, we obase to discard parts of It The CGGWS's
internal model ofinIstruction descriptions was too im-

JOI 5 Reep iha salU5 b mvs 55St Ied. it ren too slowly and produced tables that were to
611 WOM *At d* @DP UPS IM 1MM UP. 40 de m large. The COWe' co generator spent too much
@&Oal hedIt dae ~pw. Bad anise ls'm thM% q 3 in bj per- time interpreting cumbersome tables when checking
oil"m of %M AMMs fM -.I101. wQ "NIfit semtantic attributes When we began Whe experiment wefrPpub&. ,eqWA fte ni s

1,8210 2107

weret uncertain how we wanted to charge the autbated
.4. semantic handling. Cossequsntly..we aoes to program

the eantic attribute evaluator as VAX-specifih symuo meain left right
tines hand-ceded in "C". rather than attempting to Son- -rti ahid child
orate the semantic actions automatically. We are now Asig 2 a destination~ source
converting to progrem genterated semantic actios. pls add operand Loperand
Thin change will make retargeting ear. Hui a multiply operand operand

We were able to reclaim all parts of the CCCI Crnha odtoa .. etntobranchrelating to the s~ntewrc aspects of a machine deeci- Ci a cioeran oern
tin grammar, including the table generator. All pieces Indir 1 memory address
of the CCCVS daling with semmsnic aspects were din- fetch
carded. Name 0 glbl

Colds Generation__ Dreg a dedicated
There are three logical parts to the basic Graham- zero 0 0

Glanville code generation technique. The target One 0 1
* mchine description (1) Is led to a table constructor (a) TWO 0 a

In the cods generator generator. The constructed IFour 0 4
tables then control an instruction pattern matcher (3) Eight 0 cstn

intecede generator. The firet two parts awe static. label 0 label
they are used once for each target machine. The last

* part Is *mmiv. Invoked for every program ben comn- real 0 U0
pied. ival 0 destination

rag 0 reister
* .1 1gt acie edptiam11w k Toal end oon4brmdaa 111beaws

In the Graham-Glanvill systemn. Instructions en
the target machine are described as attributed pro-
ductions in a context tree grammsar. There Is one non- As described in [GlanvileYUJ]. each production has
terminaIinthe grammar for eacholanof registers an assocated wtht astring andasetefsemantic bind-
the target machine, and an additional santefltial non- ings into the left and right hand sides of the produc-

* terminal. In addition there an be non-terminals for tics. The string and bindings are used to construct the
peeudo-registers and for status bits or condition codes. assembly aode representation of the generated
The terminal symbols -in the grammaar are the node Instructions. In addition each symbol on the right

labes i th exresson ree fo whih cde n t be hand side may have semantic quallfications. all of
generated. The right hand sides of the productions In which must be met before that pattern Iminected.

the ramar avethe refx lneaizedfor ofa crn- For example. the semantic qualification may require a
* putation tree consisting of terminals and non- constant to be in a specified range (implementing a

terminals. The left hand side designates hew the cor- .iidmoreqreacnatoregsrtob
putation effects the processr. In the original the seine one referenced In mther part of the pro-
Craham-Clanvlle formulation, each production duction (Implementing a &WOWim idiew). As the reader
describes the operation perflormed on the target will on, semantic qualification In handled differently in

* machine by one Instruction, together with 5'15 cominb- emr sods generator.
nation of addressing modes describing the operands.

*We call such a machine description gramsmar Jiad. LLTOS oSIA
For most examples In this paper, we wll show the The machine deseription grammar Is preeessed by

linearmsed tree, instead of the graphical representation a teble-generating program similar to an 3LP') parser
of the tree. figure I describes the terminal and 05 generator. Meet nmchne description g - w ae
terminal symbols we will use throughout the remainder highly ambiguous, sin the target mwe.
of the paper (exeept for the Appendix). By convention. any Implement an expression in many dini,

* all terminal O'Ibhel start with an upper e letter. The table generator disambiguate@ the gramr*L- by
* non-terminal symboks begin with lower case letters. huworing a shift over a redece in a lf/redese

Urne specified otherwise, all non-terminal symbols senflict, and a reduction by the longest possible rule in
e n311417. a pebsea/redese coniit. Thus. the table-driven pat-

tern matcher implements the Wsian a mc& manoid
[CattsilgO in fwic the largest possible pattern in
matched. If ther are twa or mere longest rules, then
the table generator cennot statically choee among
them. In that ease, the pattern matcher will cheese
amons them dymeviafaly using semantic attributes.

The table generator ontains algorithms to ensure
that the pattern mateher will net get Into a looping
sewiguration, where nan1-termineial bain rules are

cyclically reduced. The table Senewator eseO cheeks if and the eenteatial nonteruinols. would ha's over S mil-
there is "cme input for Which the patterni matcher will ame produatlosIn a. edet to write and proces a feasi-
perform an ems action, also cGed a ajpiestl Washk. ble VAX description. the description grammar must be
In this can., the present table generator onIy notes jIsotoe& In a faetored grammar, additional non-
ths user. and does niot attempt corrective actUn. terminals group together symbols having a common

In addition, the table generator leeks for Patterns DUotio throughut the gramma. To preserve the pro-
whic ca beuse cal Ifa smanic cndiionIs et. parties of the pattern matcher. only two kinds of factor-

In general. the input cannot be guaranteed to satisy lgaeosire atrn ccmpteutsead
such a condition. Therefore. in the event Of such & Mactoring of operator symbols into classes. Thus. in a

oe~mnfti bMock. the table generator constructs a factored grammar. each right hand side is either a
dslault action alternative tra other Productions. dttened tree or a single operater symbol.
That default alternative typically causes Imore than ne Plot every production In this factored grammar
instruction to be generated. sesecods to be emitted. productions now either

---spWe phrases (subtroes). eon& instructions. or
* 3L& Pattern Matcher serve as glue. In the factored grammar, a non-terminal

The instruction pattern matcher Is a table-driven no longer has a "ie semantic attribute. as it did in
shiftreduce parser, invoked once for amh expression the giat grammar when it could only be a register. With
to be compiled. Bach reduction corresponds to one the freedom to factor, there are now many more
logical instruction' emitted in linear time in a provably choless to makes when writing the grammar and Impls-
correct order. Since the pattern msacing and table menting the semantics. We will describe the design

*construction algorithms are based on a well under decisions for the VAX grammar and semantic attributes
stood model. and the tables are constructed automati- we used after we outline the phase structure of the cede
sally by a provably comret algorithm [Glanville?$]. the generator.
only source for errort In constructing the instruction meiamo01 bt ndD Pw
selector is in the machine description or the support, eesa g~ae n aaPo
ing semantic routines. In order to cater to the needs of the parser-driven

pattern matcher. our cede generation phase Is one sin-
4. Neddloaeas to the Boe AIgrttMx gle program structured into logical subphases. as shown

We find that becaus of the richnes of the instruc- In figure 3. Roughly one half the code generation time
tion set, a flast machine description grammar for the Is spent in the pattern matching phase. We now
useful VAX instructions, written using only the register describe the phases in more detail.

-agae
specific VAX specifiec ode generator

front ends
Phase 1 Phase a Phase 3 Phase 4

can" glow InstrucFio

4 AnUOahasB oblect o fl
A nepeeo refo C.Pascal oreao partrrn Ul77 tu
3 eansion, p~sl re recogitio geneatio

euaionn regpattern
Dotev oerato madnargdeemntc e t

3 symbolic VAX assemblyAcode

a ngm Te of expessiotree IDbbe Jutiiction__

um~mC seuec ofws patternsw~o
OD opa 0aqral erao an m operan semnti descrptor

-.

al. ibm 1: Ue eou~m &L&. ibm le: Odmatl derif
in the first phas. sucb epressionU. trer gush Deftr I nstruction wre seleted for an espies-

code Is to be generated Ws trnsfod to stake Dods Am tree. the portable "C' compj~e reorders the
generation easier. Same of thenetsaeralu tree. using two geals motivated by ~n teobuiqais In
might mere property be dose by the first pass of the (SeWOJ. The &At goal in to minlmise, the register

*"C", poegt or fortran compilers. Hewever. we oboes requirements for evaluating the expression tree. The
* not to modi the existing "front end. eomed goal Is to discover subexpreslons whose

evaluation will cause subsequent rogoster spillin ad
S 1.1. ibm 1ek MIlei Ceaski Ne to Insert splialt, stores to compiler generated tem-

?be saort circuit operator In "C- (&ib end I) porwl to avoid the spiL By beading the situation
cestain implicit control. flow. Sbeewith thes In advnwe the oude selector will never run out of
operators wue rewritten to asks the Impiceit tots end regster,. Since in the portable "C"' compiler reord-
sonditmsa branches soplioit. kab-trees describing ering Is ditint from Istruction selection., coordina-
function oalls are replaoed by compiler generated ties is lss than pefect A to a source Of many
temporaries so that ontest owthing does "o ocu errors In retargeting P=C (Johnsonuii. Idevertheless.
within espreesin trae. A ue of such a temperery is the attempt to prevent spilling is a good Idea. The
Presead by an qes em tree which assigns the espression reordering In PCC occeas is Its second
result of the function evaluation to the temporary. pas nd Is therefo not reflected in the Input to our
(Thus. function calms are no larger embedded in more @ode generator.
complexs ezresslons.) S"t of these trnfrmaion Since the Instruction selector in mur code genera-
are target Machine Independent tor des a left to right, no backup traversal of the

Two additional control fow wrnfratosae eupress tree unpre~tably allcating registers. it
motivated by the architecture of the VAX. The fist Is possible that a mostly right recusidve tree could
removes selection Operators fromR the trot Th 010 run out of registers. However. an equivalent left
ties operators test a boolean value and evaluate oe recunsive tre might not have this problem. Since
of two possible expteslos for the value ot the selec- "C"*. Panoel and Fortran do not specify on operand
tor. A transformation makes the conditional branches evaluation ordering, we introduced a simple reorder-
expicit. Segoni. a truth value representing the Ing heuristio In the firs phase of our code generator.
result of a comparison must be constructed by a The heurwinI to assume that the more complicated
sequence of tests. jump@ and asgments, sinc the shtrest of a biary operator, and hence the one that
VAX lacks an Instruction to- sostruot, such a value. euAld be the left subtree. Is the subtree with the
The tree Is rewritten to Insert the mote primitive meet neos. The subtroes are swapped afoording to

operaionsthis measume and If the binary operator is not com-
Thoe oeraor werowittn n paseme Mutativ (assignment. subtraotlo and division awe
Thes opratos ae rwriten n phm oe eamples). then it Is replaced by a now operator thatbecause we wanted to Isolate all Issues of control flow tolls the third phase of the code generator to order

to the tree rewriting phase. Unfortunately. the latter the somputed values properly. In our experiment.
two transformed computations each need a tem- adding these reverse biary operators Increased the
powr register. Therefoe the &Ars phase requires a sine of the grammar by 25%. Increased the size of the

regitermangerthatis otaly isjont ornthe tables by OftE but elfected! register allocation in less
register manager in the third Phase. This tradedf than IX of the exprssdons in am set of C' pro-
needs to be reevaluated; e JL grams. These statisc reile t both the simple nature

~ - at "C" expressions. and the preexisting left recursive
01iffed biumas oemplle gea e expression tres.

Some fiditioaI 0-m -rmtm weThevt"U bit phase of our code generator will die-
by the particular tat maebine. ftritng Is seeft am these subtress which will always require regis-
War to expand Intermediate language opeos baw ter spilling an the MAX by virtue of the operation

Ing no corresponding hardware ordaton the target being Performe. However, because of register
mahine. Unalgne arttmoti operatore we V062a management Cemplesity Isses, the anrt phase can
oempite not kew wlsob values PhiuM be spilled. Since funs-

We aso owrto te tee o I N rearsin im all andstrctue wrecord assignment always
We e~e ~wrte he ree o tistcerain require spills, the bet phase factors them out of

lpees of operands and replase partleul smpta- espreselons and replaces them with references to
tMew by ether soe that fewer patterns e neded. e~ wie temporaries. The register Manager in the

bess bdhsaell rede thescbnger atre third -bsn Is propared to spli registers into tem-
iuilleently, epoaythmderla de5. porwle en the fly.
For example. lef shif by a ecam"an In replaced by

Nmultllctlen by the appropriate power of L subtrae- Lo ft a maim UNowher
tim by a seunt In replne by an aditise. -I a The sesnd phase is the pattern matcher. Within
seamiet opermi ibid of m oiddities operator is epttnmahr.nbeepuligrecio
breed to be thes MRf ehid We said do perm son- emiense the seMantic attributes of the pattern into

stin biingat tin oin, bu soaseme tat he e ftmaiue asociated with the left-hand side non-
""In endW have I&e

-4-

Itea~l Typically. thene reductions correspond to gomenei destination 1st source Sadsouc
addressing mdes, Sines the other phase neither amn oftrator oewned oeerad oscrand
no shoGld Predict hew the Pattern mataher will make juD 4CL a(tp) (1.. 5117> <l, a~fp)>
thI esmieneans. an cmmunictien &=e the

reslgtree t rnmen to the fellewlag semaentic (Hers "at) Is the assembler- syntax for earl-
able "a", "SIT' In the assembler syntax for thephase is thog the Imemditte attnstutnt rids. an ""stns orthdt

Vona ear be a logical bottlenteck. Other reductions are
either for parsing purpoes. or sause em or mere type hag.)
Instructions to be emitted byr the subsequent phase. Initially. the fret Ine In the Instruction table

entry in found. The Idiom recognizer may then select
&LS Phase & befrneism Gemerdtis the second or third liIn the instruction cluster. We

The mejeriy of the work In the pest-ptter- will return to this example In the next section.
Matching phase perform relatively uninteresting If semantic blocking were pessible for a given
housekeeping oborea. The Interesting parts are the instruction, the instruction selector would first check
semati aspete of Instruction selection and genera- the saentic restrictions causinag blocking. If there
Use. and reg~te alloation. ere a saentic block. the selector would then

As a precoAtis. to entry~ Itth Instructio replace the given Instruction by a default list. How-
genrtion phase the syntectio pattern has selected a am0. our VAX description does not eorntain any semen-
sYntastispatturn for a three address Instruction. That ti block*.
pattern Maa oen to mere then sue aose of If the destination were en assignable register.

* ~ o lrtrtiens or Pseudo instruationa depending on the Instead of a memory looadon. than the register
* semantis restrictions. The pattern matoher anm managier would be called at this peint. The assigned

thin efere. be regarded an an lnstructle. schene. it it regslter would he encapsulated into an addressing
was necessary, the pattern Matcher has else broad mode descriptor. and the general Instruction voice-
the lnstuotflmas operands to he eonverted to the tie. meohanisin would be called.

* appropriat datatypes
533. Phase Sb Idiom keegaltion

* 5.. hine ft. bMei b'strual bh1eb We recognize two classes of idioms, binding
Instructon selection is driven by the selected idioms and range Idioms. A binding idiom determines

syntactic pattern. and by the Information stated in a whether ane of the source operands mates the des-
hand written *asbuems table. lash entry in the tUnation eperand. as -m precondition for turning a
onetruoticos table distinguishes *mnIg iwirent, three address instruction Into a two address Instrue-
instructions having the sme syntiatic desription. tie. A range Idiom shecks whether one of the
and speolfies the descriptio of ech Instruction that sources to the humetruorn Ws a constant In a partion-
an be emitted. An entry In this table Is cheee based 1st, possibly degenerate, range. Dinding idioms are
on the generic operator and the types eflite operando. always shucked before range Idioms. There is one

Figure 3 shw the table entry for addition ot range Idiom associated with each VAX instruction that
MLees The "op" fiel Is the operator name. Th can be simplified. Te range idioms are implemented

Soflud Is the nmber of operands required by Un opera, by funotions written In "C"; these functions follow a
tar nd he prin" feldIs te asemler nemnic relatively straightforward ceding style.

for the Instruetice. The "binding" Oded specifes the Let us now return to the example. The binding
binding Idiom (an eperater nine). the So.. ild Idiom (ADD) sbocks that wne of the seurees matches
Indleates whether the socoe operads earn be the destination. ither source will do. as specified by
Swapped. and the "rang" field speifies the internal the Ad~ fud In the instruction table. Snce the
nme for a range Idiom second scum matches the destination, the two

operad variant is used. The two operand varian has
so binding Idiom but there is a range idiom associ-
ated with the aiRt so the range idiom is tried. That

ADD 3 L4N "'w ADD yes id f-43Idiom determines whether the ether source is a literal
ADD I LONG "awd nunl no Ladd with the value anm; If so. the Nad instrustion would be
WIC 1I= LOG mnr null so nulused. Since In our example the test tagls. the WM

a4f 1k bKW4T09U YW1= Instruction Is emitted instead.
Sim*e we have the mechanisms, it is convenient

to have the idiom recegniser catch certain pseudo-
* Whenreuesed togenerate geor thea (atypi. isntrustions. The previous phase Incorrectly assume

eel)"cs'that the VAX an Implement thoe pseudo-
assigent spresieninstrustions in ene machine Instruction. Theae

q al?.osudentrtione include signed Integer modulus.
the inWtlWtlo selector is presented with the syntase which requires a register to held an intermediate
tU pattern for a tUree address add heirUten and result, and unsigned division which requires a sail to a

these smont deelpmr hr the soero and the librar function that Is knew not to modify Say

regitm ra. Thseprters wre net rewritten usin the numgement tochniques. flnally. the demands of cer-
geoerel mechanism. In the first phase. because they tain Fortran programs required us to implement this
were not anticipated in the design of that phase. simple form of register spill and unspill.

With the ecenption of pSOU ioIntrltion ea M. Phase 4: Oupt Gonernien
isa. the Idom reeognsr sub-phase is optional In the
sme that If t R weomitted. correct code would AtM nt9Oi~ r atuuuwWi seu

*be geneted. Many of the aoiess nads by this sosrepresentation by onsulting two tables. The
phase could Instead be moade by a more general "prit"fildIn the istrctiotabe (fgore 3) dfins
peephole optimiser, provided that register assign th operator. oeac operand is printed by consulting a
mont had nt already been done. hand wrte addrawft~ niode format tab, which is

net described here.
5.5. Phase orn: 3s"l4or Eamsmat Q n otGnee e eal

?be register manager Is extremely simple and :- i Deal
--ohitced The esventlons for register usage We now eamine ismss in Whe grammar and code

established by Whe portable "C" compiler diwide the generator design In particular, side effects. Whe gram-
registers for Whe VAX Into dedlested register, which mar structure. Whe augmented grammar, our method
are assigned by Whe fist pass of PCC. and Whe Ment for handling type coversion, and finally the problems

ailsregstes, hic ar asignd b owreget. we bad "reunding out" Whe code generator to acceptanaelTe register miche inethis ourmregistertWe ennire "C" language. These Issues relate to all
assignable registers open demand from other routines pae fW eegnrtr
in Whe Instruction generator. L. Ob EMets

Sooe Uwse is no detection of common sub if an Ifstruction produces useful results in two orsins (except thoe with very7 short, lieie mere locations, then Whe basic Greham-Clanville algo-
wrasted by the tree transformer). Whe les ecnl rlhms can only track one result. The other result
used register Is also Whe register with Whe meet distant .ms einrd nestecmuainhsbefuture use. Consequently, the registers can be utb goe.mestecmuainhsbe
assigned and feed with a stack disciline. When an doagged In Whe Input to the cede generator as a kind of
assignable register Is requested as a destination for a cmo u-xr5In alr oepotsc
particular instruotimn the register manager attempts multi-valued expressions can result In code
to reclaim and reuse assignable registers fro the dnemooteniyeforfboth auretonremenoth and caute-smume operands to Whe instruction. Talling that, the dermnsieeecsorgits(bhaeclsd

nextfre regste isseleted ifwereis o ~as the msale addressing mode), and for tracking the
able register available, a register hrem Whe bottom of condition codes that are set by most instructions. We

the tac Isspiled Reistrs re lwas silld t we able to model auteic and condition cods by per-
compiler generated variables. We call memory twa- frmneihrsuclaugedvnrcoitnr
tions holding spilled values Wiref rsgitere. to distin- exreely simplified data flow analysis. For "C' pro-
gum" them fromn Physbale vegtasw grams on Whe VAX we generate acceptable cede.

if a register is spILled, It Is reloaded Just, before it To are currently examining Whe poesibility of using
* Is used, sine the register manager cannet determine a sode generator that does not recognize autoinc or

whether in a given ventext an alternative Intuto onadition codes,. together with a peephole optimizer
osul hae ftohd te opran diecty ~with data flow, analysis (Davdsonell (GlegerichSIJ. Thepeephol optiive woulde Ithouc auton andctl cond-

meoro.R attempt Is made to remember W~Er Uin cede Improvement where possible. That organize-
contents In order to replace fetches of copis fro ton would simplify more parts of Whe code generator
memory or to avoid @pills when copies already exist in than the following discussion suggests.

memry.The peephole optimizer strategy would stil not
Recall that register assignment is also performed model either the extended divide instruction which

when rewriting tres In the first phase (S5.1.3). aomputes both a quotient and a remainder. or the
Despite logical separation, both phases elicate regis- strin ntructions. However, using both quotient and
tos free Whe same hardware register bank, so the remainder would be appropriate only If the source
elecots of register assignment performed in the first language provided a multi-valued divide operator, or if
phase muet be cemmualeated. to this phase. The first data flow analysis revealed that beth values were used.
phase geneates special tree. specifying whioh regis- Neither of them situations are possible in the comn-

ten t asigedas ellas ausegeut. he esoip- pliers undet discussion. (Morgang] discusses string
tie grammar has special productions to match them hsrcin nacmainppr
trees, and the register manager in thi pb adtrjustsna opaio apr
ais Internal Me"a eeerdlly. In Whe present cede generator, we generate the

We susessfully ran and developed Whe sode gen-. autaine addressing mode only to modify dedicated
water flor months without findng a "C" or Paca Po- registers and then only if We dedicated register is the

gro destinationrgites.Cnsqunly i of a poetfix increment or prefix decrement
gr~mregiter. Ceseqenti. ~ binary operator. Them operators are in theseemed nimpestaft to implement bettor register

- Intermudiate language .aly If they are In the source addressing modes. Cmnsequently. the initial grouping
* language. rbfitn other opportunities for antolne osued amn Ift/rsoee conflete of ths (simplified)

ontall date flow analysis. [Ganspatbiil diecovers o o
*ways to use autolne by a pest analysis at bade oo Ieks dip Ph * constant rogt

The ssantle descriptor for auto=n must be hack Wbaep Plu Pb.
- died carefully to prevent the side leet, from ocurring

more than oo; after the fret use and side elfect. the A decsion to dt In this state is tantamount to
descriptor is modifed so mny subsequent reeec wil deciding that the "Plus" will be Implemented by the

rderto he Sm lcatins.addressing hardware as a displacement address
refe to he ame ceaton.("isp!), rather than by an ad instruction. The

On the VAX. almost myW Intruction sets the eon- decision is premature. and could lead to a syntactic
-dition Codes, Usually as a side elecat. Consequently. f bleek although net In this simple example. To avoid
-a condition code value Is to be used for a conditional thi prbe "Plus" and "Mul" cannot be factored as

branch (the only possible use), that use must fellew a "Weeop', although that factoring is valid for "Or"
*immediately. Therefore. our code generator can han- an.)(e

dle condition codes syntactically without the muliU- me eteapie describing conditionode In guiis
value tracking problem we alluded to earlier, also ove factored. There is a production not previ-

In fact, because of the Immediacy of ondition ously shown.
* Gode use, condition codes are act explicitly reflected
*In our machine description. For example, an ad rag -0 Dreg IUD code. just miednsel

Instruction which puts Its value Into a regite might that Wlows dedicated registers to be used everywhere
* hae the description: assignable registers an be used. This production

doss not generate cods, and so the condition codesrog - Plus rva1 rval "adill rval. ival. rag" wre not set. contrary to the assumption shout the
where "rvar' denotes an adressing mode. As a side nsa-terminal 'Ing" In the first general pattorn
elfect, the Instruction sets the condition code. A con-. Cbranch Cmp rag Zero Label "jCmp label"

* uiti.n.! branch instruction which tests the condition
code is described by. TO solte this problem. we added a new production:
0.0 Cbranch Crap rog Zero label "iCap Label" *4 Cbirmh Cap Dreg Zero label

Here terminals, -Cap" and "Zero" describe the par-"WDrg mpLbl
ticular condition of interest and ,reg"* implicitly refers This change circumvents the factoring in this context,
to the condition code setting. Thus, the patr since the choice of a shift over a voa-ee will foc
matcher automatically determines -from contest selection of the second "Chranch" pattern for a dedi-
whether the Instruction was executed for its condition cated register, rather than the Abet. Notice that we
code setting or not, stil havn the advantage of factoring in other register

Contexs.
WL The Augmented Graner Meet of the outstanding bugs in our code genera-

We developed the initial machine description tar are caused by remaining Instances of overfactor-
grammar by factoring address subtrees and operator la.We ine developing a factoring theory to help us
classes. This initial grammar was ever factored. @&us- find and repair thesecasms automatically. We have
Ing incorrectly resolved dftroduee conflcts, leading not yet Invested the time to implement tools and

* to Incorrect or Iniefficient code. The grammar also had redesign the grammar to avoid overfactoring. How-
*syntactic blocks. Both problem were solved by adding ever, we feel there Is nothing inherently difficult

productions to the Initial, grammar. about writing machine grammars to avoid these prob-

UMl. Ovet ted amar
An an example of ovr storing. our inital factor- eLm. Blatentle Deekine

ization grouped the operators "Plus". "ull'. 'Or". Woealso had to add production to alleviate syn-
and "*Xor" together into a special operator non- tactic blocks (erOr productions). Syntactic blocks

*terminal, called "hinop". This new non-terminal occur In long productions because coding alterna-
replaced the operator in occurrences in whichit was tUmes expressed an shared left context in a given
the primary operation at the instructien. We chose state, are Insuffcient to handle all cases. To prevent

*this factorization to reduce the number of states. syntactic blocking, we added 6ridge proectess to
This factoring seemed to make sense, since these the grammar. A bridge production shares left context
eperators e all binary and oummutative. hae blent- to the point at, or sightly preceding. a syntactic

* ine operand soenties. and awe Implemented in block. A bridge production does not correspond to a
essentially the same way. However. "Plus"l and "'Mull" single Instruction or addressing mode. However, it

* alsow mIn esotensa in the grammar in which they will handle the mere general continuation of the
we seconday eperations. for example within sisared prefix

* 'im immita m besetol Sea a a s1sda1m
* ac des~n. ni m oma sawe.

The following two productions show hw the &L 8omantiesoe
* bridge productions are used. The tree form of the Our VAX description has no Instanes of semantic

right hand sides is in Figure 4; the linearized form is blooking. Only one situation arose in which semantic
- en below. blocking might have occurred. Since the default list
bIn .-0 Pus Ps t r , orconstruction mechanism in CGGWS was disabled whenbride: rg - Plus Plus Coast reg u*rl we developed the code generator. we onverted thesemantic block to a syntactic block, which was then

The first production describes the addrs cm- resolved by bridge productions. We describe this cue,
putation performed by the displacement Indexed because it appears to represent a more general sort of
addresing mode; note that the oomputation performs choice between syntax and semantics.
an Implicit multiplication by four. However. there is a In Its simplest form. semantic blocking can arise

Ssyntactic block in this production at the left subtre In describing the addressing modes of the VAX because
of the "Miu". indicated by the "e". since other argu- the hardware incorporates typed addressing. For
ments to "Mur' are possible. The second production example, the general form of the address computed by
is the bridge production. "Rval" is a non-terminal displacement Indexing is:
corresponding to any general operand. and conse- dx - Plus Plus Const reg Mut Const reg
quently any integer expression which could be com-
puted Into a register, so "rve" will cower the evalua- where the "Const" left child to the "Mul" operator is
tion of subtres other than multiplication by four. semantically restricted to be 1. 2. 4 or 6 (correspond-

lyntatic blocks can be detetd automatcally In to byte, word. long or double word addressing). If
Synhtactiblecocsrucan be1detec automaticall the second "Coast" is not 1, 2. 4 or B. a sequence of

by the table construct or (3.2). although when we instructions must be generated. To avoid semantic
developed the grammar. this part of the table son- blocking, we introduce the syntactic tokens "One".
struetor was disabled for trivial implementation rea- "Two". "Four". and "Eight" in place of the second
sons. We found it satisfactory to inspect the dense "Const" when describing the addressing mode. The
action-next tables for ewr actions: we had no resulting syntactic block is resolved with a bridge pro-
surprises when we re-enabled the automatic check. duction, as discussed in the previous section.
The semantic actions for bridge productions can be
synthesized automatically from real instructions, The replacement of the semantic constraint by a
although we also did that by band. (The automatic syntactic one potentially reduces the power of the
techniques are discussed in [GanvM@78].) code generator. Now, the special constants will be

Weontythe athe discovered only If they were converted to syntactic
We do not yet have a theory explaning what the tokens when the input was generated. That might not

ushered pert of the bride production should be. n be done for every occurrence of those constant values.
the npile above, we chose the recursive non- On the other band. it may be faster to handle these
temial "rml"; the recursive n~on-tmia "ragJ" casesl syntctialy, rather than semantically. This

would have covered the block as well When the gram- issue merits further invetestian.

mar is written it is dificult to predict whioh choice for

the covering non-terminal produces bettor code. 0.4. Dat 7"n ad Tpe Ceversim

The expression trees input to the code generator
consist of generic operators attributed with the data
type of the resulting value. Other attributes to the

block: [e4 operators or operands, such as the binding of a dedi-
cated register, need not concern us her. With the

Plus exception of the de-reterncing operator and the
incomplete set of conversion operators, the operands

Plus Hui must be converted to have the same type as the
expected result before the operation can be per-
formed. This reflects the semantics of "C". Pascal and
Fortran. as wall as the conventions of the hardware.
However. In the Incoming expression trees, the

bridge: [ree] operands have their own data types, which need not
Pu agree with the data type of the operator. The "front
Plus ends" rarely generate the conversion operators.

Phu rval In this experiment we did not check any semantic
attributes in the expression tree as a condition to

ra" selecting among productions in a reduce/reduce

cofalict nor did we have the related mechanism for
default list enstrution and applicaUtion that the basic

, Rpm 4: A Spatmile Desk =4 No Bdp Graham-Glanvile algorithm uses. Consequently. we
had to use syntax to Insure that the type of the actual
operanda orrectly matched the expected type of the
formal operands, and that appropriate conversion

-a.

* -. Instructions were generated. Mei type msatehing Is checkig Ws. In efft, Interpretive. We Intend to
0* *W neec etwm the Instrucion table (LLI) Is Moocre that tIme/Space tradeoff.

LL NINohafte
In order to implement tyP aeeig ad typo mee ah thseoeaosfrigteitreit

eaversle n sutaclly. every symbo that ean peei eto teoeaos emn h itrgl
bly hav a diferent type attrlbutse most he ropomed exrsso Us vr a~ Implemented on the VAX.

* by a diffrent syMbels. -e for each type. In additien. as It was easy to desribe meet of the VAX instructions.
the special censtants 0. 1. L 4 and must hav their oernd and data trpda. FWra number et reasons. we
o termingl symbols. because of the Importance they Oert, WPlin

play in cemparisons and address eanstruetlen. stutrs fie. and unsigned numbers. ?be later
Asa oneqasce o "satahr smesies we mediate trees wre both undocumented and poorly

Anacneunea sna fo saete" we suited to esprig tStrueturee and fields. Sme of
tee problems would s away If we Introduced new

*type for which the opeaton Is defined. USlborating operators in the tres. spent more time eanenleellsing
* ~those new symbols and preduetiens by bond is tediou h rebooeptes aoig ndrdsge

and erro pron. Instead. we write generic eperaters. soe sreanc bfre ptrn mtbn.n edsge
operands and productiene. and use a meare preproess- sme ac routines.me asgmntoea
sor to 1We replcae the generic grammar, yielding theTh Claggecmonasimntprs

*Batl grma tram which th tale an constructed. tars suob as "+'. wre expanded by the tree rewriter
The mae we the charaters sag. me fret and In the tret phase. For example, the "C" statement
third caracters wre identical. and tersely speolly th B * b

*set ef machine dafta typos permittn repioate. The beces:
s eond earaster specifies whlch replecation operator a b
is Ito be applied. Dbra a'is treated as a eenmm sub expreession. It Is

For example, a generic production describing theee to he directly addressable. This transformation
introducs additional operators and requiree mechan-

addrss ampued y depigemet Idezlig.the Isms In the third phase to defne and refeence a
example used in UILLIL Ie ehown hervi'. leeally seeped semeon sub expression corresponding

dxJ~ 4 lus.) Pus! oas rej Mul P rag,) (7) to an address. This rewriting rule is ompatible with
our algorithm hor fadng binding Idioms. as the assign-

me harste "fIndeate tat he ~ot~Oein~ meat operator I.st ceded as a three address
types with different data dsie we valid; the claes ohot Intuon. and then transfermad late a two address
asters "r' and 'Or' expand to a type specific suf Instmuetion. Unh~rtunately. assignment operators not

* eharacter and constant, respectively. Type replilstle. Imlemented by the hardware In eme Instruction. such
yields: as unsigned division, are not handled well by ovir

4Plus! ln Constregj ul)Omere model. Our only reason htr performing this transfor-
dxjl PhusI PhusI Coast re:l Mulj Fr ragj macbins grammaer, as we did net went to maintain

dxi Plej lue! Castro~ MI tiht eg.l gparatI patterns hor variants of the -me hardware
Type repliation has thre drawbeeks In eur InstructIon. In retrospect, the problems we created

* -Implementation. Yint. the else of the final grammar Is were much harder to sofve correctly than those we
enermeus. Second. the type repllester only works on sadd.

* roductions whose latra preduotio type variation is We spent Inordinate amounts of time writing and
estentI o e uealal xeddt IP testing expressions that exercise the union of problem

cesproducts to orste the 5ubgremmar deeffibing area in our code generator. As a bonus we else found
the data conversion instructen. We Perfrmd Ud bugs in the portable "C" compiler. mhe complicated
arem product by hand and Intredasod sevral wen. expresions we Invented ean net be expressed in Pas-

The third problem with type repleatisa. a we cal or Fgrtran?Y. Our fiverite was an expression with
ImpemetedIt, is the iterface between the grammar chained unsigned assignment division operators on

end the reiin that eneeped01A smantics The auto Incremented bit Goeld operandel
Mintra"e is cenetrained by the Amction call to --Ir
that tea*a a Avnge argument, a hand and predue- ?COGeeaoDelpment

Uon umber. This restrieted caell to "3Is eoaused by We develped our code generator ovr approxi-
had deign In the grammar speolflatloo language, and mnely a yewato partime work. (Some of this time was
is not en Inherent problem with ow soft geneation spent Improving the table generator.) L L. Henry origi-

techique. sally developed the code genersar to cheek some
t Is ewa that putting type sntrait back Into hypotheses eonering grammar faeterlation. The

the smaniens e traUints would MWanth desription machine dscription grammar we. first written only hor
smaier. Wha is less clewr In the e111ct tat Would hoe long data type ahd the eaily implemented Instruc-
on the Speed of the eede genese since saeantle teas, but included o1 addressing medes. 'When the t-

~ tong Ir tlbosos wore empirically verifid, we began to
Vame air aso su ejem Am j -~ exor we endeO geerto se RW that It COuld generate

shavedemduW .5- ee -iteresting programs. It took as several

-7

ierations before we discovered the algorithm to good or better then that produced by the portable "C"
transform and canonlemlls trees. sm i n almost all ases.

L lobulman re-wrote the grammar and semantic Naturally. ear restricted code generation model
actions so instruction slection wes data type sensitive. afecS h quality of coda we Produce We could not
7bi additio was comounded by porl unsood change the "front ends" of the CT. P aorortan77
Inter-prodaetlon interactions caused by ovraneig. cpilers. nor could we change the asuntg peephole

We aso haned he impe rgiser anaer ~ aptimizer or assembler that further process the ---sam-
catsdoule rgisers n~ o spn a~ unpinregiter. hy code the code generator produces. We do not per-

Adding structure assignment and field operators fomdt oworc mnsb-prsonalsir
affected all sub-phases in the code generator, most not- any uos-local coda improvement. Finally, we omitted
ably the instruction generator. cetinstructions from our machine description. such

In the last stages of development. we became
bogged down because it required over two memory- *. codum
intensive hours of VAX 11/730 CPU time to construct a Te have not yet had any experience retargeting
new set of tables from the enormous machine descrip- this compiler to other machines. Wo feel that the tech-
tion grammar. Since we could only iterate on th gram- niques to factor the machine grammar can be applied
mar once per day, we removed bugs by modifying the to a new machine. In a now implementation, we would
grammar only as a last resort- Nevertheless, the table reconsider our decision to type operands syntactically.
constructor was run more than 325 times during acneto hc ral nrae h ieo h
development, aimost always for a data-type subsetted aca to ba ral nrae h ieo h
description grammar. Subsequently, we have developed grammar.
new techniques which Speed up the table constructor 'We wee two primary benefits of this experiment.
dramatically. First. In our experience. using a pattern matcher in a

production compiler provides a well understood model
Because the code generator was developed by for instruction matching. The pattern matcher is a con-

"augmentation-, instead of by a grand plan, and the einplctonasut.inawludrtoday
grammar developed by "avoidance", the internal venmont late towlenc aut insatwelliundpersw.
semantics have many rough edges. We gave no thought ams l h mweg bu ntuto atrs
to speed when coding the semantics, and find that the The experiment has also pointed up some of the
code generator rns Slightly slower then the portable important issues to pursue in developing this method
.ICI. compiler, further. We have Weeady improved our algorithms for

table construction so that the computation for our corn-
SCode Generaorw UMsUee plate VAX descrIption, which used to take over two

Our generic machine description grammar for the hours, now takes ten minutes. We are investigating the
VAX before type replication, has 458 productions, 115 tradeoffs between syntactic and Semantic treatment of
terminals and 06 non-erminals. After type repication. attributes. In that connection we are studying the best
the fnal gre~unar ha 1073 productions. 219 terminals, way to use the formalized attribute processing pro-
and 146 non-terminals. end yields an Instruction selec- posed by [GanapathiNl]. We are also examining ways to
tor with 3316 statess. recognize and handle situations in which maximal

munch is. within our code generation model. sub-
Our code generator spends most of its time pars- Optimal. We are examining the interaction between

In$. This reflects beth the large number of chain pro- pattern-directed code generation with flow analysis and
duotlono in the grammar, and the time spent manipu- optimization, and the interface between our method for
lating and unpacking the description tables. Many of table-drsiven code generation and peephole optimize-
the shain productions are a consequenoe of the syntac- tion.
tic treatment of machine data-type conversion. The
Appendix Shows the actions the parser/pattern matcher 10. IbH holIg-eets
makes when generating sod. for a simple Pascal state- Stuart Feldman. Dan Halbert. Peter Koester.
iment. Marshall L licKusick. and Tom Morgan provided vato-

*Our soda generator produces cods that passes val- able comments on early drafts of this paper.
dation suite for "'C". for Pascal and for Fortran77,
although there are Still subtle bugs involvng conversion 11. D1steremeee
between signed and unsigned data types. For a partlcu- (Catt@liSO] Cattell, R.G.. "Automatic Derivation of Cede
lar large IC" program, our code generator generates Generators from Machine Descriptions". ACM 7han-

* soda In 80.1 Seconds, compared with the 55.4 seconds eactigts ont Progswnwing Lianetiees and S9ws
the portable "C" compiler spendel. Our coder produces 2E2). pp. 173-190 (April, lEO).
11365 lines of assembly sods: PCC produces 1139 Haaes.
Although we have net done any Statistical comparisons. (Crawfordfl] Crawford. John. "Engineering a Produc-
it appeas that the coda generated by owr program is S tion Code Generator", Prectedbne of the ACM SIC-

PLAN N8 IVWeefosman of mp4Iev onfrwen.
* hesoafisa.a lambda fee ADgAa ase 4N pls"soo. (June 33-25. 1933).

she two for beob eampm ods"U tn spent romead tn tDavtdoon~i] Davidson J.W. S"$VVijn# Code thmie-
Seimsas KI ent lbv a$h)%phoa Opnis1fovi PhD

-10-

Dissertation. TR 91-19. Department of Computer Sci- [JansohnW0] Jansohn. H.S. mnd Landwehr R. "CGSS: Ein
enae, University of Arizona (December. 1951). System zur Automatischen Erteugung von Codegen-

tFeldman79] Feldman. S... "Implementation of a Port- oratorn. Unlertat Karlsruhe. Karlsruhe. West

able Fortran 77 Compiler Usin Germany (July. 190).

PeocssdbWs of the SIOPLAN ftmpomtum en Cbvn- [Johnson79] Johnson. S.C. and Ritchle. D.M.. "Portablil-
pder Oarfnst tfaon. 14(8) pp 96-106 (August. 1979). ity of C programs and the UNIX System". Bell Sys-

[Ganapath=o] Gampathi, M. "Retargetable Code Gen- torn ftchcal fournat 67(6). pp. 2021-2046 (July.

oration and Optimization Using Attribute Gram- 1973).

mars". PhD Dissertation. TR #406. Computer Science [JohnsonSl] Johnson. S.C. Pbrsonal Cbmmuncatta.
Department. University of Wisconsin. Madison. WI (July. 1961).
(1990). [Joy?9] Joy. W.N.. Graham. S.L. Haley. C.B. Berkeley

(Giegerich82] Giegerich. R. "Automatic Generation of Pmeal Ifert Manual *rvsin 1. 1. Computer Science
Machine Spe.iftc Code Optimizers". in Conf. Record Division. University of California. Berkeley. (April.
Ninth ACM 5"m. A'incpes of Progveomntn 1979).
Languages. (January 25-27. 1982). [LandwehrS2] Landwehr. P.. Jansohn. H.S.. and Goos. G.

[Glanville77] Glanvlie. R.S. "A Machine Independent "Experience with an Automatic Code Generator Gen-
Algorithm for Code Generation and its Use In Rotor- orator". Proceedings of the ACM SIGPLAN '1 Sym-
getable Compilers", PhD Dissertation. UCB CS-78-0. postu n on Camp(W r Csnatructton. (June 23-25.
Computer Science Division. EECS. University of Cali- 1982).
foraia. Berkeley (December, 1977). [Morganl2] Morgan. Thomas M. and Rowe, Lawrence A..

[Glanville78] Glanville. R.S.. and Graham. S.L "A New "Analyzing Exotic Instructions for a Retargetable
Method for Compiler Code Generation". Cbnf. Record Code Generator". Proceed Tgs of the ACM SJGPL4AN
ifh ACM .Spnp. Prncpls of rogrmming 'M1 Sympoimw on COmpiler bsC t wifn on. (June 23-

Zatuages. (January. 1976). 25. 1952).

[Grahsm=O] Graham. S.L. "Table Driven Code Genera- (SchulmanS2] Schulman. L.A. "A Reimplementation of
tion", IEEE Cbmputer 13(8). pp. 25-33 (August. ihe Second Pass of the Portable C Compiler".
1980). Master's Project Report. Electronics Research

t1boratory. University of California. Berkeley (to
[GujraJl] Gujral. 1. S. Rstw'getable Ode 0noawtton appear).

I for AD4AJO Cbmptlrv. 7 127. Soft.ech, Weltham, A(December, 19r1). [SethlO] Sethi. R. and Uliman. J.D. "he Generation of
(Optimal Code for Expressions". JrACM 17(4). pp. 715-

[Henryl)] Henry, R.R. "The Code Generator 729 (1970).
Generator's Work Station: Experiments with the
Graham-Glanville Machine Independent Algorithms
for Code Generation". Master's Project Report.
UCB/ERL MS1/47. Electronics Research Laboratory.
University of California. Berkeley (June, 1981).

°ADA in a tdemak of t.he U.1. Deparuma of Defse.

-Il-

q

VN

3L Appenix A Comlete. Cede Gemerailon RaMple
This appendix @bows the code our code generator produces for the "example

expression" in this Incomplete Pscal program.

Fn81r appendlz(output);
aw a: ntege I stred w a go6 name I

pedum too.
vr b: -121 .. 127; | twed ,atn th j ns Iboon

a:- 7+ b | eDw e exprestom I

begin

fec

The first pus of the Berkeley Pascal compiler turns the example expression into en
Intermediate tree with this linearized prefix representation. The tree transformation
phase does nothing with the tree, so it is passed to the pattern matcher "as is".

Asignl long assignment
Name1 -a- long global name
Plusi long addition

Cont~b: "Er' byte constant
Indir_b indirection to fetch a byte

Plus)I address (long) addition
Constb: "b" byte constant
Drgj "ip" long dedicated register

The code generator performs the foUowng sequences of shft me e, ad aoept
actions when generating code for the example expression.

action on what semantic action
shift Auignj

Nift Mamel
-.d0se namel. Name.) encapsulate

redone notypelvali 4 namel nceapsulate
rodee notype.)val.l- notype*lvalU. glue
reftee Ival.' ' notype.lva.l give type
shift W-1~
dAift Plus.l
shift Const b
1edace const.b Constb encapsulate
reduce cnstw - constb glue
rudoe co.st) constw slue
dsft ceonsti1
shwt Indlr-b
shit Plus.)

wift Const.b
redue constb -Const-b encapsu.late
roduce const.w constb glue Acc.p ; s/ '

duM coast.j constw glue
hift cbnstIl

shift Dreg.) 71 T.Q
*dluoee srsL! o DroLl encapsulate I 6

reduce reLl - reLl glue gra,
redtes disp 4 Plus. conistreLl encapsulate operand lut¢tc..'
reduoe amuneonb 4 diep glue |
redw am-b - am.-unonb glue I
redue. notyeral.b Indir.b amob encapsulate | . ..

rodueo rval b notype_rval.b give type Distribuit on!
redo"e tegl 4 vaib emit syW~ b(fp),r -. - -- - -
rodae notypeorvhI - regl encapsulate Avei1li I

e a otyperVl a 4 notyperalU.I glue .
rodllee ral g notypejral.) give type
reds"e asLtroe.,l 4 AssignI IvalI Plusi , i

const~i rvall emit "adIS rO. ,.&1
tabo otree. aagtleel glue

eoe.tree 4 ciree.s glue
no tree glue

•ccept * glue

-'12- "

l-- HIlI.li l i n l iii ll.

